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Abstract. A theory of cyclotron transitions in electron-phonon systems is presented with the 
help of the projection method and applied to obtaining the cyclotron resonance linewidth 
for the piezoelectric polaron system. The linewidth in the moderate-temperature quantum 
limit is proportional to the square root of temperature and independent of the magnetic field 
for ‘adiabatic’ processes, which is in qualitative agreement with the experiment of Baer et a1 
and with theoretical values of Saitoh eta1 and Arora. The width for ‘non-adiabatic’ processes 
is proportional to the temperature and the inverse square root of the field. The results in 
the low-temperature regions in the quantum limit agree well with those of Larsen and Choi 
et al .  

1. Introduction 

The study of cyclotron resonance absorption lineshapes is useful in obtaining information 
about the scattering mechanisms for the charge carriers in solids. Since Meyer and Polder 
(1953) discussed the linewidth for piezoelectric scattering, many theoretical (Mahan and 
Hopfield 1964, Zook 1964, Larsen 1966, Kawabata 1967, Saitoh and Kawabata 1967, 
Lodder and Fujita 1968, Miyake 1968, Tam 1969, Argyres and Sigel 1974, Arora and 
Spector 1979, Choi and Fujita 1981, Choi and Chung 1983, Pal and Sharma 1974, Prasad 
1982, Suzuki and Dunn 1982, Ryu and Choi 1984, Ryu et a1 1985) and experimental 
(Baer and Dexter 1964, Sawamoto 1964, Ohyama et a1 1986) studies have been made of 
the linewidths, dealing in particular with their dependence on the magnetic field ( B )  and 
temperature (T) .  

Especially, widths in the quantum-limit condition have drawn the attention of many 
theoreticians. Mahan and Hopfield (1964) noticed the importance of the effect of 
piezoelectric electron-phonon interaction upon the properties of low-energy electrons 
and obtained the width based on semiclassical arguments. Larsen (1966) undertook a 
quantum-mechanical calculation by extending the semiclassical theory and obtained a 
width proportional to B1I4. Saitoh and Kawabata (1967) got a quantum-mechanical 
expression for the lineshape function using Mori’s method (Mori 1965) and derived 
expressions applicable in both classical and quantum conditions. They predicted a T112 
dependence for the elastic and non-adiabatic scattering processes in the moderate 
quantum limit in which the magnetic field is strong but the temperature is comparatively 
high. 
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Miyake (1968) carried out a quantum-mechanical calculation of the width at mod- 
erate temperatures by using the thermal Green function method (Kadanoff and Baym 
1963) and predicted BT-3p dependence. Tam (1969) derived an expression for the 
energy and width using Kubo's (1957) formula and the method of double-time thermal 
Green functions (Zubarev 1960). Arora and Spector (1979) obtained awidth that squares 
with that of Saitoh and Kawabata (1967) by using the density-matrix formalism method. 

Choi andFujita (1981), utilising LodderandFujita's (1968) quantum theoryofwidth, 
obtained the same result as Larsen (1966) at zero temperature. Suzuki and Dunn (1982) 
developed a quantum theory using the Kubo formalism and the resolvent superoperator 
expansion method and predicted P,5B-2 and Ttype dependencesfor low- and moderate- 
temperature cases, respectively. Ohyama et a1 (1986) discussed various scattering mech- 
anisms, including acoustic piezoelectric scattering. 

It is to be noted, however, that all these theoretical investigations have produced a 
bewildering variety of results. So the situation in the quantum-limit condition still 
remains unclear. 

The purpose of the present paper is first to obtain the linewidth for piezoelectric 
potential scattering by utilising the projection method introduced by Mori (1965) in the 
case of adiabatic and non-adiabatic scattering processes, and secondly to compare the 
linewidth with other results in the quantum-limit condition in the moderate-temperature 
region. Comparison will also be made in the zero temperature region. 

2. Theory of cyclotron resonance transitions 

The average power P per unit volume delivered by a circularly polarised electromagnetic 
wave of frequency w and amplitude E is given by (Kawabata 1967) 

P = (E2/2) Re[a+-(w)] (2.1) 

where the symbol Re  means 'the real part of'. The conductivity tensor a+- (w)  is the 
Fourier Laplace transform (FLT) of the response function a+ - ( t )  defined by 

a + - ( w )  = JO= d t@+-( t )  exp(-iGt) 

where W = o - i/zO, zo being the field-free relaxation time (Jones and March 1973), 
and the response function @+ - ( t )  is the current-correlation integral given by (Kubo 
1957) 

P 
@ + - ( t )  = Lim(l/Q) 1 do,  Tr[pJ-(-ifiP,)J+(t)]. 

0 
(2.3) 

Here Q is the volume of the system, /3 = (kBT)- ' ,  p = p(H)  stands for the grand 
canonical density operator normalised to unity, J' = J, * iJy, J ( t )  standing for the total 
current operator in the Heisenberg picture, the symbol Tr means the many-body trace 
with respect to the electrons and phonons, H i s  the Hamiltonian of the system, and the 
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symbol Lim means the bulk limit. By using the modified Hamiltonian formalism (Fujita 
1966), equation (2.3) can be changed into 

O+-( t )  = Lim(l/Q) lim a/du,(Tr'[[p'J'(t)]). (2.4) 
u p 0  

Here Tr" is the many-electron trace, U (uX, U ) ,  U,) is a constant vector, (. . .) denotes the 
average over the phonon background, and 

p' = exp(aN - fiH')/Tr'[[exp(afi - fiH')] (2.5) 

where Nis the number of conduction electrons, H' = H - J U ,  and a = f i [ ,  [being the 
chemical potential. It should be noted that the phonons are assumed not to be correlated 
with electrons in equation (2.4). 

In the presence of a constant magnetic field along the r axis, characterised by 
the vector potential A = (0,  Bx, 0), the Hamiltonian H of a system of non-interacting 
electrons in a phonon field is given by 

'6 

H = h(L) + Hp (2.6) 
I 

h = h o + V  (2.7) 

ho = ( p  + eA)*/2m (2.8) 

y, = C, exp(iq - r) (2.10) 

H ,  =fix uqb,tb,  
4 

(2.11) 

where b i  and b,, respectively, are the creation and annihilation operators of a phonon 
with momentum fiq and energy fiu,, C,is the interaction operator andpis the momentum 
of a conduction electron with effective mass m. 

Then, neglecting the spins, we have 

ho = + (Py + moox>2 + P m m  (2.12) 

where wo is the resonance frequency given by w o  = eB/m. The eigenfunctions of ho are 
characterised by oscillator quantum numbers N = 0, 1 , 2 ,  . . . and two-dimensional k- 
vectors k = (ky, k,) as follows: 

(2.13) 

(2.14) 

where yo = (h/mwo)'/*, X = -hky/moo, H,is the Nth Hermite polynomial, and L, and 
L, are normalisation lengths. The energy eigenvalues are given by 

E , V , k  = ( N  + 4)fiUo + E(kz) (2.15) 

E(k,) = fi2k:/2m. (2.16) 

Hereafter, E ,  = EN,,k,, and la) = v N , , k ,  will denote the energy and the eigenstate with 
a = ( N , ,  k,) respectively and a + 1 will indicate ( N ,  + 1, k,). 

YN.k(r) = q 5 N ( ~  - X)(L,L,)-1/2 exp(iyk, + irk,) 

+ N ( ~ )  = (2"!ro ~ / ~ G ) - ~ / * H ~ ( X / Y ~ )  exp(-x2/2ri) 
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Then IT+ -(o) is reduced to the single-electron formalism (Kawabata 1967, Lodder 
and Fujita 1968, Suzuki and Dunn 1982): 

o+-(o) = (hwo)-l c ME,  + hwo) --f(&)IY,(6). (2.17) 

Heref(E) stands for the electron distribution function and YE( 6) is the FLTof ( j - ,  j'ct)),, 
where j+(t) = exp(iLt/h)j+, j' = j, 2 ijYJ being the single-electron current operator, 

LY 

and 

L = Lo + L1+ L, 

(2.18) 

(2.19) 

where Lo, L1 and L, respectively denote the Liouville operators corresponding to the 
unperturbed part of the single-electron Hamiltonian ho, the electron-phonon interaction 
Hamiltonian V and the phonon Hamiltonian H,. 

For the calculation of Y,(6), we now define the projection operators P, and P, as 

(2.20) 

(2.21) 

where X is any linear operator. Following Mori (1965), we separate j+(t) into the 
projective and vertical components with respect to the j' as 

j + ( t )  = P,j+(t) + P,j+(t) = .Z,(t)j+ + Z,(~)fl(t  - S) ds  I,' 
where 

-- dZ,(t) - iw,Z,(t) - lof r,(t - s)Z,(s) d s  
d t  

where 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

We see that w, = w o  if (V,,) = 0 is assumed (Kawabata 1967, Lodder and Fujita 1968, 
Suzuki and Dunn 1982). Then comparison of equation (2.23) and the FLT of equation 
(2.26) leads to 

Y , ( W )  = (in')' (2.29) 

where (plJ+la) = ((&-ip))* = ie[2hwO(N, + 1)/m]1/2dP,,+1, F,(G) is the FLT of 

iR(6 - coo) + hF,(o) 
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r,(t) defined by equation (2.27), w, has been replaced by oo in approximation, 
and X ,  = ( a  + 1IXla). By taking into account the relations ( a  + llF,Aa) = 0 and 
P,LoGopP, = 0, from equation (2.27) we have 

(2.30) 

where Go, = (hG - Lo - LP)-l. 
We define the phonon state as 

14) = hql, nq2, * . ., nqr, . . .) (2.31) 

where nq, is the occupation number of the ith oscillator, and take into account the 
following formula: 

(2.33) 

Then, with the help of equations (2.31), (2.32) and (2.33) the lineshape function Fe(&) 
for the second-order scattering strength is obtained from equation (2.30) as 

i h f , ( 4  = hAN,,k,(W) + ihYNa,k,(w> 

(2.34) 

where n9 is the phonon distribution function and the yN, k , ( ~ )  and AN,,k,(w), respect- 
ively, describe the relaxation rate and shift. The ,U # LY + 1 in the summation means that 
the terms ( N , ,  k,) = ( N ,  + 1, k,) should be excluded. Therefore we need to include 
only terms such as ( N u  # N ,  + 1, k, # k,),  ( N ,  = N ,  + 1, k, # k,) and ( N ,  # N ,  + 1, 
k,  = k,). However, the ( N ,  # N ,  + 1, k, = k, = k,) is excluded since the matrix 
elements of the interaction operators, y4  and y,' , in the numerators do not contain k, = 
k,. The ( N u  # N ,  + 1, k,, # k,) describes the contribution of the non-adiabatic 
processes, while the ( N ,  = N ,  + 1, k, # k,) describes that of the adiabatic processes 
(Shin et al 1973). The difference of these processes depends on whether the matrix 
element of the interaction operator is diagonal or not. Similarly, the ,U # a in the 
summation includes only terms such as (Nu # N,, k,, # k,) and ( N ,  = N,, k, # k,). 
Equation (2.34) is reduced to Choi and Chung's (1983) formula if h / ro  approaches zero 
in the energy denominators. That we allow h/ro  to go to zero is acceptable in the 
quantum limit (Jones and March 1973). We will follow the recipe in what follows, on the 
understanding that h / ro  can be reintroduced if necessary. 
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The presence of ho, = ylhs(q: + q1)'l2 in the denominator of equations (2.38) and 
(2.39) makes the integration quite difficult. Some simplification is therefore inevitable. 
We follow Kubo et a1 (1965) to make an approximation q: % qt  , which will make no, = 
hsq,. Now, we make a simple assumption that the phonons have wavenumbers of the 
order of l/rO. Therefore, the phonon energy no, is replaced by qhs/ro for the acoustic 
phonon energy (Pal and Sharma 1974, Arora 1976), where r]  is aparameter that describes 
the extent of inelasticity of the collision (Arora 1976). 

3. Resonance linewidth for piezoelectric potential scattering 

We assume that all electrons occupy Landau states with N ,  = 0. That is, the distribution 
function for electrons with non-zero quantum number vanishes. Then, equations (2.17) 
and (2.29) reduce to (Lax 1958, Ciobanu and Banyai 1963) 

- nee2 t -- f O ,  k ,YO. k ( a> 
Re a + + ( w )  = (2e2/m) Lim(l/Q) 

k ,  [(U - + d . k z ( a ) l  - 

where k,, = k,, ne is the density of electrons, t is the mean relaxation time, the inverse 
of which gives the linewidth (2/ t )  at o = oO. and we have dropped the energy shift since 
we are interested in finding the width (Kawabata 1967, Lodder and Fujita 1968, Suzuki 
and Dunn 1982, Prasad 1982). 

The interaction between the electrons and piezoelectric acoustic phonons is defined 
as (Meyer and Polder 1953, Saitoh and Kawabata 1967) 

where K is the electromechanical coupling constant, a = &h2/me2 the effective Bohr 
radius, E the static dielectric constant of the medium, and s the speed of sound defined 

lCq12 = 2nK2sh2/maQq (3.2) 

by 

3.1. Moderate-temperature region 

In the temperature region specified by hwO 9 kBT 9 hs/rO, we may approximate nq + 1 
and nq by (@hsq)-' and consider only the transition between states with N ,  = 0 and 
N p  = 0 in equations (2.38) and (2.39) as Saitoh and Kawabata (1967) did. 

Then, recalling that the relaxation rate Y O , k , ( @ )  is the imaginary part of ihr,(w) for 
N ,  = 0, considering equation (3.2), changing the summation in equations (2.38) and 
(2.39) into the integral as (Arora 1976, Prasad 1982) 

0, = sq. (3.3) 

+ Q ( ~ x ) - ~  dq ,  i,' (2n/r;) d t  (3.4) 
4 - *  

and considering the relations 
lim (x - ib)-l = p(l/x) + ina(x) (3.5) 

b-0' 

we easily obtain from equations (2.38) and (2.39) 
y o , k , ( o o )  = (K2kBT/2ha) {A-[2 - a- exp(a-)El(a-)  - b -  exp(b-)El(b-)] 

+ A + [ 2  - a +  exp(a+)El(a+)  - b+ exp(b+)El(b+)]} 
(for non-adiabatic processes) (3.7) 
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and 

K2kBT 
Yo,k,(WO) = {B-[2 - c- exp(c-)El(c-) - d-  exp(d-)E,(d-)] 

+ B+[2 - c+ exp(c+)El(c+) - d +  exp(d+)El(d+)]} 

(for adiabatic processes) (3.8) 

where 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

In the case of the elastic scattering fork, + 0, which is y = 0 in equations (3.7) and (3.8), 
the width for the non-adiabatic processes is finite. That for adiabatic processes is infinite, 
which is identical with the result of Suzuki and Dunn (1982). 

For a more quantitative discussion in the elastic scattering approximation 
(y = 0), we must include the effect of the electron distribution. Assuming the Boltzmann 
distribution for low electron densities (of the order of 1014cm-3), we obtain from 
equations (3.1), (3.7) and (3.8) at o = oo 

(3.17) 

where we havemadeapproximationsa' exp(a')El(a') = b' exp(b')E,(b') = 0.6since 
a' = b' = 1, d' = 0, in the quantum-limit condition. We have made another approxi- 
mation c )  = 2rik; = 2kBT/hwo = 11.26 for the experimental temperatures 2-10 K and 
resonant frequency 70 GHz (Baer and Dexter 1964). This rough approximation has 
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been adopted for the sake of mathematical convenience, Performing a Taylor expansion 
and integration over k,, we obtain 

(3.18) 

(3.19) 

The calculated width that corresponds to the inverse mean relaxation time is proportional 
to the inverse square root of the magnetic field and temperature for non-adiabatic 
processes in the quantum-limit condition. The T dependence for elastic scattering is 
identical with that of Suzuki and Dunn (1982). The width for adiabatic processes is 
proportional to the square root of the temperature, which agrees well with those of Baer 
and Dexter (1964), Saitoh and Kawabata (1967) and Aroraand Spector (1979) obtained 
under the quantum-limit condition and those of Meyer and Polder (1953), Mahan 
and Hopfield (1964) and Zook (1964) calculated in the classical limit. However, the 
conditions are different from one another. For CdS, the material constants are K2  = 
0.03, m/mo = 0.165 and a = 2.4 X lo-' cm, where mo is the bare electron mass (Saitoh 
and Kawabata 1967). From equation (3.19) the mean relaxation time is given by 

(3.20) (t),d = 1.23 x 10-11T-'/2 S 

for elastic scattering, while the experimental value is (Baer and Dexter 1964) 

(z),,, = 1.36 x 10-11T-1/2 s. (3.21) 

3.2. Low-temperature region 

At low temperatures specified by hao S hs/ro S kBTand T-, 0 K in the extreme quan- 
tum limit, we may make approximations wq = s/ro and nq = 0. Then, for slow enough 
electrons for which k,+ 0 (Choi and Fujita 1981) at w = wo, we obtain from equations 
(2.38) and (2.39) 

(for elastic and inelastic scattering) 

(2/z)ad = { 13/*K*s (nu,) 1/4 im1/4, 

Here N 
by the Debye temperature OD as 

(3.22) 

(for elastic scattering) (3.23) 

(for inelastic scattering). (3.24) 

Np - N, for N, = 0, and ND is the cut-off Landau level index characterised 

ND kgeD/hwo. (3.25) 

The summation in equation (3.22) would tend to infinity if the cut-off in equation (3.25) 
were not taken into consideration (Choi and Chung 1984). In other words, we have 
assumed that there is phonon scattering only up to OD. The width is independent of 
temperature and magnetic field for non-adiabatic scattering processes, while the width 
for adiabatic scattering processes is proportional to B1l4 for inelastic scattering, which is 
in qualitative agreement with the results of Larsen (1966) and Choi and Fujita (1981). 
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But the present result does not agree with the result of Suzuki and Dunn (1982), which 
is proportional to T4,5B-2. 

In the case of hs/r, %= no,, %= kBT at IC) = oo, we have from equations (2.38) and 
(2.39) 

N D  ND 

(1 + + I: 1 (for inelastic scattering) (3.26) 
N = 2  N = l  

( the  same as equation (3.22) (for elastic scattering) (3.27) 

( 2 / ~ ) , ~  = the same as equations (3.23) and (3.24), respectively (3.28) 

where we have assumed that electrons are also slowly moving. The width in the non- 
adiabatic processes is independent of the temperature for both elastic and inelastic 
scattering. However, it is independent of magnetic field for elastic scattering, but 
proportional to B1i4 for inelastic scattering. The width in the adiabatic processes gives 
the same values as equations (3.23) and (3.24). The difference between elastic scattering 
and inelastic scattering is explained by Ito et a1 (1966). 

4. Conclusions 

So far we have obtained cyclotron resonance linewidths for piezoelectric potential 
scattering in the quantum limit. Our result for the adiabatic and elastic scattering 
processes in the moderate-temperature region agrees fairly well with the result of Baer 
and Dexter (1964), while that for the non-adiabatic and elastic scattering processes is 
identical with that of Suzuki and Dunn (1982) on the temperature dependence. The 
width at low temperatures is in qualitative agreement with those of Larsen (1966) and 
Choi and Fujita (1981). 

The result will be improved if higher-order transitions, non-parabolic band models, 
degeneracy of valence bands and impurity scattering are considered. 
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Appendix 1. Derivation of K functions 

We define JNw(X,  qx, X )  by 

JNN'(X,  q x ,  X )  = dx $$(x - A') exp(iqxx)$w(x - X f )  i: 
i ( x  - 8 2  + (x  - X ) 2  + iq,x 

2r 8 = (2N+N'N!Nf!nr20)-1i2 dx  exp (- 
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(Al . l )  

It is seen from equation (Al . l )  that JNN’(X, qx ,  X ’ )  satisfies the following equation: 

J”’(X, q x , X ’ )  = JNN(X’, q x , x )  =J?”’X, - 4 x , x ‘ )  =J?w(x’, - q x , x ) .  (A1.2) 

Changing the variable as z = [x - 3(X + X‘ + ir iqx)] /ro and using the relation 
(Gradshteyn and Ryzhik 1963) 

jz dzexp(-z2)HN(z + a)H,(z + b)  = 2 ” f i N ! b ” - N L J V ” - ~ ( - 2 a b )  

for N S N‘ we obtain 

(A1.3) 
--o: 

where N ,  and N ,  are the larger and the smaller of the two numbers Nand N‘,  and X ,  
and X ,  correspond to N ,  and N ,  respectively 

We now define K 1  and K 2  functions as 

and 

respectively. These functions can be re-expressed as 

(A1.5) 

(A1.6) 

(A1.7) 

(A1.8) 

(A1.9) 

(A1.lO) 

(Al. 11) 
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( N +  l)LP-N”(t) - (N’ + 1)Lp;y) ( t )  = tLr -”+1)  0 t (A1.12) 

(Gradshteyn and Ryzhik 1963) we obtain 

K(N,  N’; t )  = K’(N,  N’ - 1; t )  

N‘ [ N’! 
- - t ( N  - ex p ( - t )  L - 

( t )  L pij - l) ( t )  N ‘ > N  

(A1.13) 

Appendix 2. K-function representation of equation (2.34) 

The matrix elements in the part of equation (2.34) can be evaluated from equations 
(2.13), (2.14) and (2.10) as 

(Yq) (Y + 1 ,p = (Ne -I- 1, k ,  I cq exP(iq ’ r )  1 N p  7 k p  ) 

= cq N ,  + 1, Np(Xa., qx, X p  k,,, k ,  - q (A2.1) 

( Y i  ),,a+ 1 = C:JN,,N,+ 7 -qx , Xa)6k,y,k,Y-q,bk,,,k,,-q, (A2.2) 

<Y: ) p -  l , a  (A2.3) 

whereJNN!(X,, qx,  X,) is defined by equation (Al.  1). X, andX, are, respectively, given 
by X, = - r i k ,  and X, = -rik, ,  = -r;(kay - q y )  = X ,  + r i q y .  By taking into 
account the relation j i - l / j :  = [ N , / ( N ,  + 1)]’12 and equations (A2.1), (A2.2) and 
(A2.3), the numerator of the first part of equation (2.34) is reduced to 

k,,, k,, -4 ,  

c: J N p  - l,N,(Xp , -qx, Xa)6 k P Y , k w Y  -q l  6 k p z , k e z - q z  

(Yq)n+l,, [(Yi>,,n+l - ( Y ~ ) , - I , J ; - l / ~ ~ l  

(A2.4) 

where we have used equations (A1.5), (A1.6), (A1.10) and (A1.13). The second, third 
and fourth parts of equation (2.34) can be calculated in a similar manner. Adding up all 
the parts leads to equations (2.38) and (2.39). 
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